ShowPer Page
The adjoint of the matrix $A=\begin{bmatrix}a & b \\c & d \end{bmatrix}$ is
NETNUST Entry TestMathematicsMatrices and Determinants
The matrix $A=\begin{bmatrix}5 & 3 \\1 & 1 \end{bmatrix}$ is
NETNUST Entry TestMathematicsMatrices and Determinants
If $A=\begin{bmatrix}a & b \\c & d \end{bmatrix}$ then A is non-singular if
NETNUST Entry TestMathematicsMatrices and Determinants
A matrix whose determinant is not zero is said to be
NETNUST Entry TestMathematicsMatrices and Determinants
A matrix whose determinant is zero is said to be
NETNUST Entry TestMathematicsMatrices and Determinants
If $A=\begin{bmatrix}a_{11}&a_{12}\\a_{21} & a_{22}\\\end{bmatrix}$ then |A|=
NETNUST Entry TestMathematicsMatrices and Determinants
The transpose of a square matrix is a
NETNUST Entry TestMathematicsMatrices and Determinants
If A is a row vector, then its transpose is a
NETNUST Entry TestMathematicsMatrices and Determinants
In general, for matrix multiplication, which property is not possible?
NETNUST Entry TestMathematicsMatrices and Determinants
Given A and B are matrices of order 3, then $(A+B)^{t}$=
NETNUST Entry TestMathematicsMatrices and Determinants
Given A and B are matrices, then $(AB)^{t}$=
NETNUST Entry TestMathematicsMatrices and Determinants
If A is any matrix, and r is a scalar, then $(rA)^{t}$=
NETNUST Entry TestMathematicsMatrices and Determinants
If $\begin{bmatrix}1&2&3\\9 & 1&11\\\end{bmatrix}$ then $(A^{t})^{t}$=
NETNUST Entry TestMathematicsMatrices and Determinants
If $A=\begin{bmatrix}7&49\\14 & 56\\42 & 35 \end{bmatrix}$ then 2A/7=
NETNUST Entry TestMathematicsMatrices and Determinants
If A and B are two matrices of order 2*3 and 3*1, respectively then A+B=
NETNUST Entry TestMathematicsMatrices and Determinants
Given matrix A of order m*n, then A+(-A)=
NETNUST Entry TestMathematicsMatrices and Determinants
If A and B are two matrices of order B*B then AB=A iff
NETNUST Entry TestMathematicsMatrices and Determinants
If A is a matrix of order 3*3 and I is an identity matrix of order 3*3 then AI=
NETNUST Entry TestMathematicsMatrices and Determinants
Which pair of matrices are comfortable for multiplication?
NETNUST Entry TestMathematicsMatrices and Determinants