Editor
If $\alpha, \beta\:and\:\gamma$ are the measures of angles of a triangle and a,b and c are the lengths of opposite these angles, then according to law of sine
Difficulty: Easy
A: 
$a^{2}=b^{2}+c^{2}-2bc\sin\alpha$
B: 
$a^{2}=b^{2}+c^{2}-2bc\cos\alpha$
C: 
$c^{2}=a^{2}+b^{2}-2ab\sin\alpha$
D: 
$\frac{a}{\sin\alpha}=\frac{b}{\sin\alpha}=\frac{c}{\sin\alpha}
Sponsored Ads