Question:

Find the order of the following matrices.

 A = $~\left[ \begin{matrix} 2 & 3 \\ -5 & 6 \\ \end{matrix} \right]$ B = $~\left[ \begin{matrix} 2 & 0 \\ 3 & 5 \\ \end{matrix} \right]$ C = $\left[ \begin{matrix} 2 & 4 \\ \end{matrix} \right]$ D = $\left[ \begin{matrix} 4 \\ 0 \\ 6 \\ \end{matrix} \right]$ E = $\left[ \begin{matrix} a & d \\ b & e \\ c & f \\ \end{matrix} \right]$ F = $\left[ 2 \right]$ G=$~\left[ \begin{matrix} 2 & 3 & 0 \\ 1 & 2 & 3 \\ 2 & 4 & 5 \\ \end{matrix} \right]$ H = $\left[ \begin{matrix} 2 & 3 & 4 \\ 1 & 0 & 6 \\ \end{matrix} \right]$

Difficulty: Easy

Solution:

Order of the Matrix:

The number of rows and columns in a Matrix specifies its order.

Ans.   (i)      Matrix A has two rows and two columns

So, its order = number of rows x number of columns = 2-by-2.

Ans.   (ii)     Matrix B has two rows and two columns

So, its order = number of rows x number of columns = 2-by-2.

Ans.   (iii)    Matrix C has one row and two columns

So, its order = number of rows x number of columns = 1-by-2.

Ans.   (iv)    Matrix D has three rows and one column

So, its order = number of rows x number of columns = 3-by-1.

Ans.   (v)     Matrix E has three rows and two columns

So, its order = number of rows x number of columns = 3-by-2.

Ans.   (vi)    Matrix F has one row and one column

So, its order = number of rows x number of columns = 1-by-1.

Ans.   (vii)   Matrix G has three rows and three columns

So, its order = number of rows x number of columns = 3-by-3.

Ans.   (viii)  Matrix A has two rows and three columns

So, its order = number of rows x number of columns = 2-by-3.