Mashaal Masha

Question:

 

Find the value of X, if $\left[ \begin{matrix} 2 & 1 \\ 3 & -3 \\ \end{matrix} \right] +$ X = $\left[ \begin{matrix} 4 & -2 \\ -1 & -2 \\ \end{matrix} \right]$.

Difficulty: Easy

Solution:

$\left[ \begin{matrix} 2 & 1 \\ 3 & -3 \\ \end{matrix} \right]~+$ X = $\left[ \begin{matrix} 4 & -2 \\ -1 & -2 \\ \end{matrix} \right]$

X = $\left[ \begin{matrix} 4 & -2 \\ -1 & -2 \\ \end{matrix} \right] - \left[ \begin{matrix} 2 & 1 \\ 3 & -3 \\ \end{matrix} \right]$

= $\left[ \begin{matrix} 4-2 & -2-1 \\ -1-3 & -2+3 \\ \end{matrix} \right]$

= $\left[ \begin{matrix} 2 & -3 \\ -4 & 1 \\ \end{matrix} \right]$

 

So, X = $\left[ \begin{matrix} 2 & -3 \\ -4 & 1 \\ \end{matrix} \right]$