Mashaal Masha
Sponsored AdsHide Ads
Sponsored AdsHide Ads
Sponsored AdsHide Ads
Sponsored AdsHide Ads
Sponsored AdsHide Ads
Sponsored AdsHide Ads
Derivative of $2x^{5}$ is
Difficulty: Easy
Verified By ClassNotes
A:

$10$

B:

$10x$

C:

$10x^{4}$

D:

$10x^{6}$

$A\cap B =B$ is only true, when
Difficulty: Easy
A:

$A\subseteq B$

B:

$A=\phi$

C:

$B\subseteq A$

D:

None of the above

If $A = \{1, 2, 3\}$ and $B = \{4, 5, 6\}$ then find the number of subsets of $A \cup B$ are
Difficulty: Easy
A:

8

B:

16

C:

32

D:

64

A function is said to be even when
Difficulty: Easy
Verified By ClassNotes
A:

$f(x)=f(x)$

B:

$f(-x)=f(x)$

C:

$f(-x)=-f(x)$

D:

None of these

$\sqrt{-1}$ belongs to set of
Difficulty: Easy
A:

Real number

B:

Complex number

C:

Natural number

D:

Irrational number

Product of a complex number with its own conjugate is a
Difficulty: Medium
A:

Prime number

B:

Imaginary number

C:

Real number

D:

Real and imaginary number

What is the area of a rectangular room whose length is $5 - 3i$ and width is $2i$?
Difficulty: Easy
A:

$6+10i$

B:

$5-i$

C:

$16$

D:

$8$

If $A=\begin{bmatrix}2 & -2&4 \\0 & -3&-4\end{bmatrix}$ and $B=\begin{bmatrix}1 & -5&6 \\4 & -2&-3\end{bmatrix}$ then $A-B$
Difficulty: Easy
A:

Not possible

B:

$\begin{bmatrix}1 & -7&10\\4 & -5&-7\end{bmatrix}$

C:

$\begin{bmatrix}3 & -7&10\\4 & -5&-7\end{bmatrix}$

D:

$\begin{bmatrix}1 & 3&-2\\-4 & -1&-1\end{bmatrix}$

$\frac{(n-1)!}{(n+1)!}=?$
Difficulty: Easy
Verified By ClassNotes
A:

$n+1$

B:

$\frac{n}{2}$

C:

$n-1$

D:

None of these

If $z=x+iy$ then |z|=
Difficulty: Hard
A:

$\sqrt{x^{2}+y^{2}}$

B:

$\sqrt{x^{2}-y^{2}}$

C:

$x^{2}+y^{2}$

D:

$x^{2}-y^{2}$

Which of the following sequence has $r=0.5$?
Difficulty: Easy
A:

$1,1.5,2,2.5\space...$

B:

$2,4,8,16\space...$

C:

$256,128,64,32 \space...$

D:

None of these

If $z=x+iy$ then |z|=
Difficulty: Hard
A:

$\sqrt{x^{2}+y^{2}}$

B:

$\sqrt{x^{2}-y^{2}}$

C:

$x^{2}+y^{2}$

D:

$x^{2}-y^{2}$

The addition and subtraction of two matrices $A$ and $B$ requires that the matrices be
Difficulty: Easy
A:

Of equal dimension

B:

Rectangular

C:

Square

D:

Identity

For any set $X$ and Universal set $U$, $X\cap X=$
Difficulty: Easy
A:

$U$

B:

$\phi$

C:

$X'$

D:

$X$

Cube roots of unity are
Difficulty: Easy
Verified By ClassNotes
A:

$1,\omega,\omega^{2}$

B:

$-1,1,\omega^{2}$

C:

$1,-1,\omega$

D:

None of these

$\cfrac{x^{3}-x^{2}+x+1}{x^{2}+5}$ is a
Difficulty: Easy
A:

Proper Rational Fraction

B:

Improper Rational Fraction

C:

Infinite Rational Fraction

D:

Finite Rational Fraction

If $A$ is a subset of $B$ then $B$ is a superset of $A$. This condition is true for which option?
Difficulty: Easy
A:

$A = B$

B:

$B \subseteq A$

C:

$A \subseteq B$

D:

None of these

How many terms are there in the expansion of $(1+x)^{n}$
Difficulty: Easy
Verified By ClassNotes
A:

$2^{n}$

B:

$n^{2}$

C:

$n+1$

D:

$n-1$

If $A=\begin{bmatrix}4&7&2&9\end{bmatrix}$and $B=\begin{bmatrix}12\\1\\5\\6 \end{bmatrix}$ then AB=
Difficulty: Easy
A:
Not possible
B:
119
C:
102
D:
34
What is the nth term of the sequence $1,3,5,7 \space ...$
Difficulty: Easy
A:

$2n - 1$

B:

$2n + 3$

C:

$2n$

D:

It is impossible to find the nth term for such a sequence

Wanna know how you did on this quiz?

0%

Top Your Class

Subscribe to the premium package and ace your exams using premium features

Go Premium Now
Go Premium