ShowPer Page
$\frac{\text{d}}{\text{d}x}[f(x)g(x)]$=
NETNUST Entry TestMathematicsDifferentiation
$\frac{\text{d}}{\text{d}x}{f(x)\pm g(x)}$=
NETNUST Entry TestMathematicsDifferentiation
$\frac{\text{d}}{\text{d}x}{cf'(x)}$=
NETNUST Entry TestMathematicsDifferentiation
$\frac{\text{d}}{\text{d}t}(3t+2)^{-2}$=
NETNUST Entry TestMathematicsDifferentiation
$\frac{\text{d}}{\text{d}x}(\frac{1}{(az-b)^{7}})$=
NETNUST Entry TestMathematicsDifferentiation
If $y=3x^{2}+2x-\frac{4}{x^{2}}$, then dy/dx equals:
NETNUST Entry TestMathematicsDifferentiation
If $y=(3x^{4}-2)^{4}$ then dy/dx equals:
NETNUST Entry TestMathematicsDifferentiation
If $y=(4-9x^{4})^{\frac{1}{2}}$ then dy/dx equals:
NETNUST Entry TestMathematicsDifferentiation
If $y=\frac{x^{4}+x}{x^{2}}$ then dy/dx equals:
NETNUST Entry TestMathematicsDifferentiation
$\frac{d}{dx}(ax+b)^{n}$=
NETNUST Entry TestMathematicsDifferentiation
The derivative of $\frac{x^{4}+3x^{2}}{2x}$ is:
NETNUST Entry TestMathematicsDifferentiation
If $f(x)=\frac{1}{(ax+b)^{n}}$ then f'(x) equals:
NETNUST Entry TestMathematicsDifferentiation
The derivative of $(x+4)^{\frac{1}{3}}$ is:
NETNUST Entry TestMathematicsDifferentiation
The derivative of $x^{\frac{5}{2}}$ is
NETNUST Entry TestMathematicsDifferentiation
The derivative of $x^{\frac{3}{2}}$ is:
NETNUST Entry TestMathematicsDifferentiation
The derivative of $\frac{2}{x^{4}}$ is
NETNUST Entry TestMathematicsDifferentiation
The derivative of $\frac{1}{x^{m}}$ is
NETNUST Entry TestMathematicsDifferentiation
If $f(x)=x^{5}+x^{3}+x$ the value of f'(1) is:
NETNUST Entry TestMathematicsDifferentiation
If $y=x^{m}$ then dy/dx equals:
NETNUST Entry TestMathematicsDifferentiation
$\frac{d}{dx}(x^{3}+2x+3)$=
NETNUST Entry TestMathematicsDifferentiation
If $f(x)=x^{\frac{2}{3}}$ then f'(x) at x=8 equals:
NETNUST Entry TestMathematicsDifferentiation
The derivative of $\sqrt{x}$ at x=a is:
NETNUST Entry TestMathematicsDifferentiation
If $y=\frac{1}{x^{2}}$ then dy/dx equals:
NETNUST Entry TestMathematicsDifferentiation
If $y=x^{2}$ then dy/dx equals:
NETNUST Entry TestMathematicsDifferentiation
If f(x)=c then f'(x) equals:
NETNUST Entry TestMathematicsDifferentiation