ShowPer Page
If $A=\begin{bmatrix}a & b \\c & d \end{bmatrix}$ and k is a scalar then kA=
NETNUST Entry TestMathematicsMatrices and Determinants
If $A=\begin{bmatrix}1 & 0&0 \\0 & 1 &0\\0&0&1 \end{bmatrix}$ then $A^{2}$=
NETNUST Entry TestMathematicsMatrices and Determinants
If $A=\begin{bmatrix}3& 6&24\\12 & 9&36\\6 &15 &18\end{bmatrix}$ then 1/3A=
NETNUST Entry TestMathematicsMatrices and Determinants
Two matrices are comfortable for additon, if they are
NETNUST Entry TestMathematicsMatrices and Determinants
l*n matrix of the form $[a_{i1},a_{i2}....a_{in}]$ is said to be a
NETNUST Entry TestMathematicsMatrices and Determinants
Matrix $\begin{bmatrix}3 & 0&0\\0 &3& 0\\0&0&3\end{bmatrix}$ is a
NETNUST Entry TestMathematicsMatrices and Determinants
$\begin{bmatrix}\sqrt{2} & 0&0\\0 &\sqrt{2}& 0\\0&0&\sqrt{2}\end{bmatrix}$ is a
NETNUST Entry TestMathematicsMatrices and Determinants
In a diagonal matrix, all enteries except in diagonal are
NETNUST Entry TestMathematicsMatrices and Determinants
$A=\begin{bmatrix}2+1 & 0\\5+1 & 5\\\end{bmatrix}$ is a
NETNUST Entry TestMathematicsMatrices and Determinants
If all elements in a matrix A are real, then matrix A is called
NETNUST Entry TestMathematicsMatrices and Determinants
If $A=\begin{bmatrix}2 & -3 \\4 & 1 \end{bmatrix}$, then $A^{t}$=
NETNUST Entry TestMathematicsMatrices and Determinants
If A is a matrix of order m*1, then matrix A is called
NETNUST Entry TestMathematicsMatrices and Determinants
If $B=\begin{bmatrix}2 & -1\:\: -3 \\-2& 3\:\:-3 \end{bmatrix}$ then B=?
NETNUST Entry TestMathematicsMatrices and Determinants