ShowPer Page
If $A=\begin{bmatrix}1 & 2 \\a & -1 \end{bmatrix}$ and $A^{2}=\begin{bmatrix}0 & 0 \\0 & 0 \end{bmatrix}$ then the values of a is
NETNUST Entry TestMathematicsMatrices and Determinants
If $A=\begin{bmatrix}a & b \\c & d \end{bmatrix}$ and k is a scalar then kA=
NETNUST Entry TestMathematicsMatrices and Determinants
If $A=\begin{bmatrix}1 & 0&0 \\0 & 1 &0\\0&0&1 \end{bmatrix}$ then $A^{2}$=
NETNUST Entry TestMathematicsMatrices and Determinants
If $A=\begin{bmatrix}0 & -2 \\2 & 3 \end{bmatrix}$ and $B=\begin{bmatrix}5 & -1 \\3 & 0 \end{bmatrix}$ then the product matrix AB=
NETNUST Entry TestMathematicsMatrices and Determinants
If $A=\begin{bmatrix}1\\4\\3\end{bmatrix}$ and $B=\begin{bmatrix}3&7&1\end{bmatrix}$ , we can find
NETNUST Entry TestMathematicsMatrices and Determinants
If $A=\begin{bmatrix}4&7&2&9\end{bmatrix}$and $B=\begin{bmatrix}12\\1\\5\\6 \end{bmatrix}$ then AB=
NETNUST Entry TestMathematicsMatrices and Determinants
Multiplication of a row vector A by a column vector B requires as a precondition that each vector have
NETNUST Entry TestMathematicsMatrices and Determinants
If $A=\begin{bmatrix}1 & -2&3 \\ \end{bmatrix}$ and $B=\begin{bmatrix}1 &0 \\2&-1\\1&2 \end{bmatrix}$ then dimension of AB will be
NETNUST Entry TestMathematicsMatrices and Determinants
If $A=\begin{bmatrix}3& 6&24\\12 & 9&36\\6 &15 &18\end{bmatrix}$ then 1/3A=
NETNUST Entry TestMathematicsMatrices and Determinants
If $A=\begin{bmatrix}2 & -2&4 \\0 & -3&-4\end{bmatrix}$ and $B=\begin{bmatrix}1 & -5&6 \\4 & -2&-3\end{bmatrix}$ then A-B
NETNUST Entry TestMathematicsMatrices and Determinants
The addition and subtraction of two matrices A and B requires that the matrices be
NETNUST Entry TestMathematicsMatrices and Determinants
If $A=\begin{bmatrix}4 & 9 \\2 & 6 \end{bmatrix}$ and $B=\begin{bmatrix}1 & 7 \\5 & 4 \end{bmatrix}$ then A-B=
NETNUST Entry TestMathematicsMatrices and Determinants
Two matrices are comfortable for additon, if they are
NETNUST Entry TestMathematicsMatrices and Determinants
The matrices $\begin{bmatrix}2 & 3&1\\1 &2& 3\\\end{bmatrix}$ and $\begin{bmatrix}2 & 1\\3&2\\1&3\end{bmatrix}$ are
NETNUST Entry TestMathematicsMatrices and Determinants
l*n matrix of the form $[a_{i1},a_{i2}....a_{in}]$ is said to be a
NETNUST Entry TestMathematicsMatrices and Determinants
Matrix $\begin{bmatrix}3 & 0&0\\0 &3& 0\\0&0&3\end{bmatrix}$ is a
NETNUST Entry TestMathematicsMatrices and Determinants
$\begin{bmatrix}\sqrt{2} & 0&0\\0 &\sqrt{2}& 0\\0&0&\sqrt{2}\end{bmatrix}$ is a
NETNUST Entry TestMathematicsMatrices and Determinants
In a diagonal matrix, all enteries except in diagonal are
NETNUST Entry TestMathematicsMatrices and Determinants
$A=\begin{bmatrix}2+1 & 0\\5+1 & 5\\\end{bmatrix}$ is a
NETNUST Entry TestMathematicsMatrices and Determinants
If $B=\begin{bmatrix}2 & 1 &5\\5 & 2&3\\3&1&2 \end{bmatrix}$ then the entries 2,2,2 form the
NETNUST Entry TestMathematicsMatrices and Determinants
If all elements in a matrix A are real, then matrix A is called
NETNUST Entry TestMathematicsMatrices and Determinants
If $A=\begin{bmatrix}2 & -3 \\4 & 1 \end{bmatrix}$, then $A^{t}$=
NETNUST Entry TestMathematicsMatrices and Determinants
If A is a matrix of order m*1, then matrix A is called
NETNUST Entry TestMathematicsMatrices and Determinants
If $B=\begin{bmatrix}2 & -1\:\: -3 \\-2& 3\:\:-3 \end{bmatrix}$ then B=?
NETNUST Entry TestMathematicsMatrices and Determinants
The diagonal containing the entries $a_{11},a_{22},a_{33}.....a_{mn}$ in a square root matrix $A=[a_{mn}]$ is called then
NETNUST Entry TestMathematicsMatrices and Determinants